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Phase diagram of symmetric binary fluid mixtures: First-order or second-order demixing
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Binary fluid mixtures of 1:1 concentration can demix in a phase transition of first order or of second order.
We analyze the two scenarios in density-concentration space and relate them to the structure of the line at
which the demixing coexistence surface cuts the liquid-vapor coexistence surface. These scenarios help us to
decide between first and second order for a model of a symmetric Lennard-Jones mixture. An optimized
reference hypernetted chain integral equation method is employed for calculating the correlation functions and
from there the pressure and chemical potentials. We conclude that demixing of a 1:1 mixture is of first order
in the whole range of parameters that we have investigated. We did not find a critical point in the 1:1
concentration plane.
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I. INTRODUCTION

In multicomponent systems such as fluid mixtures or
fluids with internal degrees of freedom such as ferroelec
or ferromagnetic liquids or liquid crystals, different types
phase transitions can occur in neighboring regions of
space of thermodynamic variables. For a binary liquid,
liquid-vapor and the mixing-demixing transition can be e
pected. It is of interest how these phase transitions influe
each other, how the regions of different phases meet.

In a series of recent papers by Wilding and co-work
@1–4# especially the case of a second-order demixing tra
tion line confluent with the first-order liquid-vapor transitio
was studied. A critical end point~CEP! is expected in this
situation when the second order demixing line meets the
uid side of the vapor-liquid coexistence line. For higher ‘‘d
mixing tendency’’ the demixing line can meet the critic
point of the condensation curve forming a tricritical poi
@5#. These points are expected to show singularities that w
first predicted by Fisher and co-workers@6–8# who also
derived universal amplitude ratios and later confirm
the properties of these singularities by model calculati
on spherical models@9–11# and on a model ferroelectri
@12,13#. The starting point for these considerations is alwa
the supposition that the demixing transition~or the ordering
in the case of the ferroelectic! is of second order.

Is the demixing transition of second order? This quest
we address in this paper. Wilding has studied a model fo
symmetrical binary fluid mixture by simulations and h
found no contradiction with the assumption of second-or
demixing. Also mean field calculations indicate second-or
transitions, expecially at elevated temperatures@4,14–22#.
The mean field results have lead to a ‘‘generic scenario’
depicted, e.g., in Fig. 1 of Ref.@4#.

The mean field approximation starts from an approxim
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tion of the free energy of the system. We have develop
approximations, which go beyond ‘‘mean field’’ by includin
calculated correlation functions in the derivation of the fr
energy. The general density functional approach leads
hierarchy of equations involving higher-order direct corre
tion functions @23,24#. The ‘‘mean field approximation’’
closes this hierarchy already at the first equation by negl
ing correlations altogether or guessing a Boltzmann fac
@15–17#. The second level of this hierarchy yields equatio
for the two particle correlation functions. Closing the hiera
chy on this level leads to the integral equations of liqu
theory, to hypernetted chain~HNC! @25#, reference HNC
~RHNC! @26,27#, local or weighted density approximation
@24,28–34# as well as to the Percus-Yevick equation or me
spherical approximation@25#. After calculating the correla-
tion functions by one of these approximate second le
equations one can employ them in the calculation of the f
energy at the first level of the hierarchy. Under several
cumstances we have shown, that a careful calculation of
correlation functions can lead to reliable free energies@33–
38#. This is shown again in Fig. 5 for the case of a bina
mixture with Lennard-Jones interactions.

When studying a dipolar hard sphere liquid we have m
already a case where mean field calculations had predict
l line of critical points for the transition to the dipolar orde
@15#, while our free energy with calculated correlations sa
the transition as first order with a jump in density and ord
parameter@36#. We, therefore, apply similar methods here
analyze the demixing transition in a model binary fluid mi
ture. The model is the same as the one used in the sim
tions by Wilding, a symmetric mixture with equalA-A and
B-B Lennard-Jones interactions and decreasedA-B interac-
tion.

In numerical calculations, simulations as well as our in
gral equation solutions, it is generally difficult to get resu
at all close to critical points and to distinguish betwe
second-order and weak first order. We show in Sec. IV h
such a decision can be obtained.
©2002 The American Physical Society04-1
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ANTONEVYCH, FORSTMANN, AND DIAZ-HERRERA PHYSICAL REVIEW E65 061504
After fully defining the model~see Sec. II!, the paper
discusses first some general properties of the phase dia
of such a symmetric binary mixture~Sec. III!. We learn
where to look for coexisting phases and then in Sec. IV
find a method to decide that in all the cases that we h
investigated, the demixing transition is of first order. So
discussion and conclusions are summarized in Sec. V.

II. THE BINARY LIQUID MIXTURE MODEL

We will study a mixture of two fluid speciesA andB. The
particles interact via Lennard-Jones potentials

Ui j ~r !54« i j F S s

r D 12

2S s

r D 6G . ~1!

As in the previous investigations@2,4,14,39,40# we reduce
the space of variables by taking the same diameterss for all
interactions and setting«AA5«BB for the mutual interaction
between particles of the same kind. This equality leads
symmetry of the free energy of the system with respect to
exchange of the densitiesrA and rB . The binding of the
particles of different kind,«AB , is taken smaller, i.e.,a
5«AB /«AA,1. This fact induces a demixing phase transiti
at lower temperatures and higher densities, when the po
tial energy can be lowered by demixing, which avoids t
weakA-B bonds. We can increase the tendency for demix
in the model by loweringa. Then demixing will already
occur at higher temperatures and lower densities.

III. THE PHASE DIAGRAM OF THE SYMMETRIC
BINARY FLUID MIXTURE

A. Consequences of symmetry

We want to discuss the phase diagram in the plane of
variables total densityr5rA1rB and concentrationc
5rA /r. When we imagine as the third dimension the te
peratureT (T* 5kBT/eAA) we can draw the surfaces of co
existence points, see Fig. 1. When the tendency for demix
is small, i.e.,«AB /«AA5a close to~but smaller than! 1, we
get at low densities a liquid-vapor surface with a line
critical points along the concentration direction. At high
densities, where in the free energy the potential energy do
nates over the entropy, we get a demixing surface wit
leading edge at equal concentrationc50.5, because here th
lowering of potential energy on demixing is largest. T
smallest density for demixing~at fixedT) is found in a 1:1
mixture.

The coexistence surfaces are symmetric with respec
the planec50.5, because the free energy of our system st
unchanged, if we go from concentrationc to 12c for fixed
densityr; only the ratio of minority molecules to majorit
matters irrespective ofA or B. For clarity Fig. 1 leaves ou
the very low temperatures. At lower temperatures the t
surfaces cut each other. We imagine that by loweringa we
move the demixing surface to lower densities~and higherT)
and this way make the surfaces cut. From drawing the
faces of coexistence points it is not yet clear which pha
really coexist: If a vapor of concentrationc1 is compressed
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the coexisting liquid might have a different concentrationc2.
What does the symmetry of the diagram, of the free ene
or of the interraction allow us to conclude about the dem
ing coexistence surface?

Let us consider the case where two coexisting demix
phases lie symmetric with respect to concentration~at com-
mon r and atc and 12c). Symmetry requires

mA~c!5mB~12c!, ~2!

mB~c!5mA~12c!.

Coexistence at symmetric points says

mA~c!5mA~12c!⇒mA~c!5mB~c!.

The conclusion is that only phases, withmA5mB within the
same phase atc can coexist with the symmetric phase at
2c. Obviously a fluid withmA5mB at (r,c) has in any case
a coexisting partner at (r,12c). We, therefore, expect tha
part of the coexistence surface for demixing is determined
mA5mB within the same phase. The coexisting phases t
have the same densityr and concentrationsc and 12c.

On the planec50.5 that was studied by Wilding and co
workers@1–4# mA5mB because of symmetry. In Fig. 2 w
show a cut at fixed temperatureT through the surfaces o
Fig. 1. We will imagine compression of the fluid along th
symmetry linec50.5. At point II in Fig. 2 the surfacemA
5mB meets the symmetry plane. If demixing occurs at t
point it will be of second order: The difference in concentr
tion grows continuously from zero and the coexisting pha
move along themA5mB surface for increasing density o
pressure. A surfacemA5mB ~line Ib-II-I a in Fig. 2! can be
expected due to the changes of the order ofmA and mB as
indicated in Fig. 2. For low densitiesmminority,mma jority
because of the entropy of mixing; for high densities it
more favorable to add a majority particle with strong bindi
potential than a minority particle with weakA-B interac-
tions, therefore,mminority.mma jority .

Another scenario is possible where at I~Fig. 2! demixing
occurs and phases Ia and Ib necessarily on the linemA
5mB , are formed in a first order transition and coexist w
I. From I starts a line of first-order coexistence points co

FIG. 1. Schematic view of the coexistence surfaces: For g
liquid coexistence at the left, for demixing at the right.
4-2
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PHASE DIAGRAM OF SYMMETRIC BINARY FLUID . . . PHYSICAL REVIEW E65 061504
necting to Ia and Ib . Here the pointsa andb coexist as well
asc andd, but nota andc. This conclusion derives from th
fact, that the curvesmA(c,r) andmB(c,r) considered along
the line I-a-b-Ia cross at I and at Ia. On the first-order line
betweena andb there will be a critical pointk where themA
and mB curves along the coexistence line simultaneou
have their extrema.

So the demixing surface will be partly a surfacemA(c)
5mB(c) with symmetric coexisting phasesc and (12c) . A
part of it towards smaller densities can be a surface of fi
order transitions with both coexisting phases on the sa
side ofc50.5 and twol lines of critical points symmetric a
concentrations away fromc50.5. The two symmetric phase
that coexist with the mixed phase atc50.5 (Ia and Ib in Fig.
2! border that part of the coexistence surface where coe
ing phases are symmetric atc and 12c with mA(c)
5mB(c).

If the temperature of the cut~Fig. 2! increases the two
critical pointsk on the first-order surface will move close
together as will the points Ia and Ib because the larger weigh
of the entropy in the free energy favors mixing, smaller co
centration differences. It might happen that finally the poi
I,k,Ia ,Ib all converge to point II which then becomes the lo
temperature end, a tricritical point, of al line of critical
points atc50.5.

We can ask whether there can be coexistence betw
points not on the surfacemA5mB for densities higher than
those of Ia and Ib in Fig. 2 We could not think of a scenari
where this situation did not lead to a violation of Gibb
phase rule when the symmetry and the continuous con
tions where considered.

B. Topology of the cut of the coexsistence surfaces
and the order of the demixing transition

We now want to understand how the topology of the
between the liquid-vapor surface and the demixing surfac
related to the order of the demixing transition. We consi
the line in (r,c,T) space, at which the two surfaces cut a
show:

If this cut line at the symmetry pointc50.5 has a maxi-
mum with respect toT, then this symmetry point is a CE

FIG. 2. Schematic cut at constantT through the coexistence
surfaces.
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and the demixing is of second-order for higherT. If the cut
has a local minimum atc50.5 the demixing transitions in
the neighborhood are of first-order.

The first case~maximum! is shown in Figure 3 with two
slices at two temperaturesTmax andT,Tmax: Fig. 3~a! has
Tmax exactly equal to the maximum temperature of the cut
which the liquid line and the demixing line have only th
maximum point II in common. Here V and II coexist becau
mA5mB at c50.5. If demixing would be of first order II
would also coexist with phases IIa and IIb a discrete distance
away from II into which the system would demix when th
density is further increased after the vapor atV has been
completely compressed into the liquid at II. At a temperatu
infinitesimally smaller thanTmax @the cut Fig. 3~b!#, V8 co-
exists either with II8 and II9, the neighbors of II, or with IIa8
and IIb8 , the neighbors of IIa and IIb , respectively, becausem
changes continuously withT. The first case,V8 with II 8 and
II 9, leads to the fact that on the line II8 to IIa8 and II9 to IIb8 is
mA5mB and atTmax the whole demixing line is of typemA
5mB . Therefore demixing is of second order at II und
further compression that contradicts the coexistence o
with II a and IIb . If in the second caseV8 coexists with IIa8
and IIb8 and not with II8 and II9, II8 must coexist with one

point on the vapor line~say Ṽ) a discrete distance fromV8.
Points betweenṼ andV8 coexist with points between II8 and
IIa8 for reasons of continuity. On approachingT5Tmax II 8
goes to II,Ṽ to V and IIa8 to IIa. We conclude that now the
whole interval between II and IIa must coexist withV, an
impossible situation. Therefore first-order demixing at II
Fig. 3 is ruled out. Demixing at II is of second order; i.e., t
difference in concentration of the coexisting phases goe
zero here if the point II is approached from higher densit
or from lower temperatures. II is then a CEP of al2 line
coming down from higherT at c50.5.

In the case where the cut line has a minimum atc50.5 we
show that this minimum point must be a point of first-ord
demixing transition. Figure 4 depicts the structure of tw
temperature slices: forT1 just aboveTmin ~at which the line
L,b,I,c would shrink to a point! and atT2.T1 above which
the liquid surface and the demixing surface do not tou
anymore. The essential difference to the case of Fig. 3 is
fact, that in the neighborhood of the point where the tw
surfaces touch atc50.5 @point of convergence ofL and I in
Fig. 4~a!# there aretwo disconnected forbidden regions~of

FIG. 3. Same as Fig. 2 for the type of contact of the two s
faces that leads to second-order demixing.
4-3
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ANTONEVYCH, FORSTMANN, AND DIAZ-HERRERA PHYSICAL REVIEW E65 061504
metastability or instability, betweena and b and betweenc
and d). On the slice just belowTmin the vapor atc50.5
coexists with the neighbors ofa andd. AboveTmin V coex-
ists with L @Fig. 4~a!#. Further compression will lead to de
mixing at I. If this demixing would be of second order, w
would have coexisting phases atc and 12c symmetrical to I.
Due to this symmetry alsob andc would coexist. But if one
compresses the vapor atcÞ0.5 one can conclude, that the
must be a pointṼ on the vapor line in Fig. 4~a!, which
coexists simultaneously witha and b. Also the symmetric
phasesc, d, andṼ8 coexist. If nowb andc would coexist we
would have six, too many, coexisting phases. The only w
out which we see is a first-order nonsymmetric decomp
tion in the neighborhood of I. I will coexist withe andf and
demix in first-order. Then it is possible that the neighborn1
of e moves to pointa and coexists with the neighborn2 of I
moving to b until finally a, b, and Ṽ coexist. Gibbs’ phase
rule that states

~ thermodynamic degrees of freedom!

5~number of components!122~phases!

can be saved becauseṼ,a,b do not coexist with the symmet
ric systemṼ8, c, d. The pointsa,b,c,d must be in regions
of the coexistence surface wheremA(c)ÞmB(c) ~see Fig. 2!,
therefore, a symmetrical second-order demixing transit
starting at I is not possible.

At higher temperatures@Fig. 4~b!# we expecta and b
moving together into a critical point with a symmetric
counterpart atc,d @CEP in Fig. 4~b!#. These critical points
are the end points of the twol lines of critical points on the
demixing surface~at cÞ0.5) that were discussed before a
that cross the constantT cut of Fig. 2 ink.

We last discuss which situation, minimum or maximu
has to be expected. This depends on the curvature of the
surfaces when they meet. In our system, where demixin
introduced by reduction of the binding between the m
ecules of different kind, the liquid curve at a given tempe
ture is convex towards lower densities, because atc50.5 the
cohesion and, therefore, the liquid density coexisting w
the vapor is decreased compared to the pureA or B liquids.
The same reason leads to a decreased critical temperatu
the vapor-liquid transition atc50.5. Also the demixing
curve has the same convexity, because the smallest de

FIG. 4. Same as Fig. 2 for the type that is connected with fi
order demixing.
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for the demixing is always found atc50.5, where the gain in
potential energy on demixing is largest. Forc towards 1 or 0
the demixing needs very low temperatures or very high d
sities, so the cutting line between the two surfaces goe
low temperatures in these regions. If at fixed temperature
convex curvature of the demixing surface nearc50.5 is
larger than that of the liquid phase surface, the surfaces
touch at one highest temperatureTmax and the touching point
will be a critical end point according to the arguments arou
Fig. 3 @point II in Fig. 3~a!#. When the demixing surface i
less curved than the liquid side of the vapor-liquid surfa
the first touch between the surfaces, when one moves d
from higher temperatures, will be at two symmetrical poin
@CEP in Fig. 4~b!# and lower temperatures are necessary
hit the touching point atc50.5, which is then a local mini-
mum of the cut line between the vapor liquid and the dem
ing surface with the consequence of first-order demixing a
two CEP’s symmetrically atcÞ0.5, as explained in connec
tion with Fig. 4.

If the potential parameters of the model are such, that
cut of the two surfaces atc50.5 is close to the critical vapor
liquid point, we always expect the first-order scenario~Fig.
4!. The critical point of the condensation atc50.5 is a
saddle point and, in general, constant temperature lines
the vapor-liquid coexistence surface will cut, i.e., will ha
infinite curvature at this point. Therefore in this neighbo
hood the demixing surface will first touch at two regionsc
Þ0.5 before it touches at the symmetry pointc50.5, con-
sidering it from higher temperatures downwards. This l
conclusion indicates only a good chance for first-order
mixing, but when the demixing surface meets the liqu
vapor surface near the critical point for condensation, the
surfaces influence each other and may deform.

This concludes the general discussion of the phase
gram scenarios for a symmetric binary fluid mixture. Wh
tuning the demixing strengtha in our model we can gener
ally expect a region of first-order demixing. We will ask
the following section, if we at all find a symmetrica
Lennnard-Jones mixture where demixing of a fluid withc
50.5 is a transition of second-order.

IV. RESULTS OF MODEL CALCULATIONS

We now apply model calculations to investigate which
the possible scenarios we find for the case of a symmetr
Lennard-Jones mixture. We use a RHNC calculation@26,27#
for deriving the correlation functions and employ those
the calculation of the thermodynamic properties: the che
cal potential and the pressure at chosen temperature, de
and concentration. We have optimized the calculation
choosing the diameter of the reference hard sphere sys
such that the calculated free energyA, chemical potentials
ma and pressureP are as consistent as possible by minim
ing @41#

DRHNC5A/V2S (
a

mara2PD . ~3!

t-
4-4
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PHASE DIAGRAM OF SYMMETRIC BINARY FLUID . . . PHYSICAL REVIEW E65 061504
This quantity could actually be made zero in all cases inv
tigated and we have shown in other circumstances, that
thermodynamic properties derived this way are extrem
accurate when compared to simulation results@34#. We dem-
onstrate this in Fig. 5 by comparing our coexistence curve
a fixed temperatureT* 5kT/«AA51 to GEMC simulation re-
sults for a symmetrical Lennard-Jones mixture witha
5«AB /«AA50.7 by Lopes@39,40#. In our calculation we find
the points on the coexistence curve by searching for
phases (r I,cI) and (r II ,cII) with mA

I 5mA
II , mB

I 5mB
II and pres-

sure PI5PII . The agreement with the simulation results
very satisfactory and proves the reliability of our free ene
and thermodynamic data.

The temperature in Fig. 5 is rather low and, therefore,
vapor-liquid phase transition as well as the demixing is
close to possible critical regions. When these regions
approached, experiments and model calculations get
problems. With our method the problem is the appearanc
regions in phase space where the integral equation hav
solutions, where integrals over correlation functions get in
nite, because fluctuations and corresponding susceptibil
get infinite@25,42#. Due to the approximations these instab
ity regions ~which should correspond to regions below t
spinodals or beyound critical regions! cover near critical
points the coexistence region and make it inaccessible
this method of calculation@38#. In addition to parts of the
coexistence surface our calculation, therefore, yields a
face of an inaccessible region, a ‘‘spinodal’’ surface.

For the case ofa50.81 this surface is shown in Fig.
@43#. We see two symmetrical hills with a deep valley ne
c50.5. It means that we have to expect critical regions sy
metrical atcÞ0.5, but on the planec50.5 fluctuations or
compressibilities do not appear to be large and, therefor
is improbable that we have there second-order transition

We have discussed in Sec. III A that forc50.5 a second-
order transition can only happen at the point, where the
mA(r,c)5mB(r,c) crosses the symmetry linec50.5 ~in a
cut at fixed temperature! ~point II in Fig. 2!. We, therefore,
investigate this neighborhood by calculatingm andP. Figure
7 shows a graph of results for such a case. We find a ris
line of mA,B(c50.5) with increasingr andP. When the line
mA5mB at cÞ0.5 crosses the line forc50.5 ~at point II in

FIG. 5. Liquid-vapor coexistence curves for a binary mixtu
The coexisting concentrations are shown at given pressureP*
5Ps3/eAA , eAB /eAA50.7,T* 51. Dots are simulation results from
Ref. @39#.
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Fig. 2!, we find mA,B rising on this line abovemA,B(c
50.5). This fact rules out the demixing phase transition
cause the Gibbs free energy would grow when demix
would set in, instead of going into the minimum. The syste
therefore, would stay mixed. In our opinion this calculati
shows that there is no second-order transition on the linc
50.5 for a50.8 andT* 51. Then only a first-order transi
tion is possible. The coexisting phases in this case must
lie on the linemA5mB ~see points Ia,Ib in Fig. 2!. We see,
that the (m,P) points in Fig. 7 form a typical first-orde
instability loop. We cannot follow the whole loop becau
we encounter the instability region of our calculation, but
larger distance from thec50.5 line we can evaluatemA
5mB again and find it well below the values atc50.5. We,
therefore, conclude, that the dash-dotted (m,P) curve of Fig.
7 turns back and cuts the (m,P) line for c50.5 at a point
different from the cross point in Fig. 7. The point of this c
is the first-order transition point shown as point I in Fig.
The parametersr and c for the cut yield the coexisting
phases I, Ia, Ib in Fig. 2.

We believe that by findingm abovemA,B(c50.5) near the
crossing point of themA5mB lines we can decide that th
demixing phase transition is of first order. We have carr
out this investigation in the region 0.25,a,0.81 and al-

.

FIG. 6. The ‘‘spinodal’’ surface for a mixture witheAB /eAA

50.81.

FIG. 7. The chemical potentialm* 5m/eAA on the linec50.5
~——! and on the linemA5mB (2•2•2) for eAB /eAA50.8, T*
51, P* 5Ps3/eAA .
4-5
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ANTONEVYCH, FORSTMANN, AND DIAZ-HERRERA PHYSICAL REVIEW E65 061504
ways found first-order. Especially also in the regiona50.7
and T* '1, where Wildings simulations@2# indicate a
second-order transition, our calculations say first order.
cause of the instability region in our procedure, we can
derive the density of the phases that coexist with the on
c50.5. It could be that the jump in the density and in co
centration is so small that a simulation has difficulty dist
guishing it from a continuous second-order transition.

V. CONCLUSIONS

We have discussed the order of the demixing phase t
sition of a symmetrical binary fluid mixture.The symmetry
the molecular interactions makes the free energy and all t
modynamic quantities symmetric with respect to exchang
the particles of kindA and B. This symmetry together with
considerations of continuity of phases with continuo
change of parameters and Gibbs phase rule made it pos
to get complete information about the scenarios of first-or
and of second-order demixing. It was possible to conn
these scenarios to the way the demixing coexistence sur
and the liquid-vapor coexistence surface cut each other:

When the cut line of these two surfaces crosses the s
metry planec50.5 in amaximumwith respect toT, atTmax,
the demixing atT.Tmax for c50.5 is ofsecond order. The
line c50.5 on the demixing surface is a line of critical poin
with a CEP atTmax.

When the cut line has alocal minimumat c50.5 with
respect toT the demixing in the neighborhood of this point
l

J

06150
-
t
at
-
-

n-

r-
of

s
ble
r

ct
ce

-

of first-order. There exist two critical lines symmetricall
away from c50.5 with two CEP’s at two symmetrica
maxima of the cut line atcÞ0.5. At higher temperature
these critical lines can meet atc50.5 and from thereon to
higher T demixing atc50.5 would be of second-order. W
have argued that the first-order scenario is very proba
when the two surfaces meet near the critical point of
liquid-vapor transition atc50.5.

Finally we have made model calculations for a Lenna
Jones mixture with equalA-A andB-B interactions and de-
creasedA-B interactions. With the optimized RHNC integra
equation method we calculated the correlation functions
determined pressure andmA ,mB for givenT,r andc. Testing
then the second-order scenario shows that the Gibbs
energy of the demixed phases lies above that of the mi
phase. Therefore the other alternative applies:Demixing is of
first order. We think that our method can distinguish betwe
second order and weak first order, which is difficult also
simulations or even experimentally.

We have searched over a wide range of parameters of
model (0.25<eAB /eAA<0.81) anddid not find a case of
second-order demixingon the symmetry planec50.5 for the
symmetric Lennard-Jones mixture.
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